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Abstract: We calculate near-horizon solutions for four-dimensional 4-charge and five-

dimensional 3-charge black holes in heterotic string theory from the part of the ten-

dimensional tree-level effective action which is connected to gravitational Chern-Simons

term by supersymmetry. We obtain that the entropies of large black holes exactly match

the α′-exact statistical entropies obtained from microstate counting (D = 4) and AdS/CFT

correspondence (D = 5). Especially interesting is that we obtain agreement for both BPS

and non-BPS black holes, contrary to the case of R2-truncated (four-derivative) actions

(D-dimensional N = 2 off-shell supersymmetric or Gauss-Bonnet) were used, which give

the entropies agreeing (at best) just for BPS black holes. The key property of the solutions,

which enabled us to tackle the action containing infinite number of terms, is vanishing of

the Riemann tensor RMNPQ obtained from torsional connection defined with Γ = Γ− 1
2H.

Moreover, if every monomial of the remaining part of the effective action would contain at

least two Riemanns RMNPQ, it would trivially follow that our solutions are exact solutions

of the full heterotic effective action in D = 10. The above conjecture, which appeared (in

this or stronger form) from time to time in the literature, has controversial status, but is

supported by the most recent calculations of Richards (arXiv:0807.3453 [hep-th]). Agree-

ment of our results for the entropies with the microscopic ones supports the conjecture. As

for small black holes, our solutions in D = 5 still have singular horizons.
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1. Introduction: motivation and results

One of the most exciting results of string theory is that it has offered true microscopic statis-

tical derivation of the Bekenstein-Hawking entropy formula for (near-)extremal black holes1

SBH =
A

4GN
= lnNmicro = Sstat (1.1)

where A is the area of the black hole, GN effective Newton constant, and Nmicro number

of stringy microstates corresponding to the particular black hole configuration. Strictly

speaking, (1.1) is valid only asymptotically in the regime of large black holes. The formula

receives both the ”classical” corrections due to the finite size of the string (α′-corrections)

and ”quantum” corrections due to finite value of string coupling (loop or gs-corrections).

The understanding of corrections appears to be invaluable for several reasons.

(i) Non-trivial check of statistical description — in (1.1) two sides of equality are calcu-

lated in different non-overlapping regimes so the comparison is indirect. Statistical

calculation is done in the regime in which space-time is approximately flat, while on

the gravity side one deals with black hole space-time (though in Bekenstein-Hawking

1Subscripts on entropy denote: BH = Bekenstein-Hawking, bh = black hole (Wald formula), stat =

statistical from direct microstate counting, CFT = statistical from the dual CFT.
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limit with small curvature outside the horizon). Identification of stringy microstates

as black holes is obtained through a comparison of set of quantum numbers (charges),

and by use of supersymmetry non-renormalization theorems for BPS states or attrac-

tor mechanism for non-BPS ones. If the equality Sbh = Sstat survives inclusion of

corrections, we can be more confident in such indirect identifications.

(ii) New insights and understanding of string theory. — investigations of the black holes

in string theory led us to some important concepts (AdS/CFT correspondence, OSV

conjecture, attractor mechanism, and structure of effective actions, to name the few),

and corrections are also playing important role.

(iii) Small black holes — for some special values of charges lowest order solutions have

singular horizon with vanishing area. It was shown on some explicit examples that

α′-corrections generally stretch the horizon and regularize solutions. Still, such black

holes are special in the sense that they are string-sized, and a lot of effort has been

put recently to understand their properties (see [7] for a recent review).

Analyses of α′-corrections generally appear to be more straightforward, not only from

calculation side but also conceptually. Here one calculates solutions and entropies from

well defined (at least in principle) tree-level action by using a generalization of Bekenstein-

Hawking formula called Wald formula. On the other hand, as α′- and gs-corrections are

interconnected by some duality relations, there is no sharp division between them.

In this paper we concentrate on exact α′-corrections for two special cases of black

holes in the heterotic string theory: 4-charge in D = 4 (S1×S1×T 4 compactification) and

3-charge in D = 5 dimensions (S1 × T 4). These black holes are convenient as on the one

hand they are simple enough to be treated in different ways, on the other hand they show

rich behavior and even some surprises. Lowest-order solutions were calculated in [33, 34].

As α′-corrections introduce higher derivatives, which drastically complicate calculations,

we shall consider only near-horizon behavior which has enough information for calculation

of black hole entropy.2

The case of 4-charge 4-dimensional extremal black holes is better understood (see [1]

for detailed review). Statistical entropy formula has been calculated α′-exactly [1], which

in BPS case (n,w,N ′,W ′ > 0) is given by

S
(BPS)
stat = 2π

√
nw(N ′W ′ + 4) , (1.2)

and in non-BPS case (for which as a representative we take n < 0 and w,N ′,W ′ > 0) by

S
(non−BPS)
stat = 2π

√
|n|w(N ′W ′ + 2) . (1.3)

On the gravity side, as effective low energy action has an infinite expansion even on tree-

level, α′-exact calculation appeared intractable. For this reason calculations were performed

by using certain R2 truncated actions, namely

2Existence of regular uncorrected large black hole solutions for all (nonvanishing) values of charges,

combined with apparent uniqueness, makes us confident that our near-horizon solutions are connected to

physical asymptotically flat black holes (avoiding possible problems like those described in [5]).
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(i) off-shell N = 2 supersymmetric action [2 – 4],

(ii) action with Gauss-Bonnet term [32].

Interestingly, both of these incomplete actions lead to the black hole entropies Sbh which

exactly agree with statistical entropy in the BPS case (1.2), but completely fail (already

at α′1-order) to reproduce (1.3) in the non-BPS case. Latter result shows that both trun-

cated actions are incomplete already at R2 (α′1-) order. On the other hand, calculations

performed by using AdS3/CFT2 correspondence gave results agreeing both with BPS and

non-BPS entropies [36, 12]. Especially interesting is the more general analysis [12, 13]

which shows that 3-dimensional N = 4 supersymmetry3 implies that the only terms in the

action which are important are Chern-Simons terms, which are 1-loop saturated, suggest-

ing that the only important α′-corrections should be of R2 (4-derivative) type. This gives

some understanding for the success of R2-truncated actions, but does not explain why such

incomplete actions are succeeding to describe entropy for BPS black holes (and at the same

time fail for non-BPS).

For the 3-charge 5-dimensional extremal black holes the situation is even more inter-

esting. Here, direct microstate counting which would give statistical entropy has not been

yet performed, but from calculation [36] based on AdS3/CFT2 correspondence one can

obtain statistical entropy, which in the BPS case (n,w,N > 0) is

S
(BPS)
CFT = 2π

√
nw(N + 2) , (1.4)

and in the non-BPS case (for which as a representative we take n < 0 and w,N > 0)

S
(non−BPS)
CFT = 2π

√
|n|wN . (1.5)

From the gravity viewpoint, calculations of black hole entropy were again performed by

using R2 truncated actions. Five-dimensional N = 2 off-shell supersymmetric action with

R2 terms, obtained in [6] by supersymmetrizing gravitational Chern-Simons term, again

gives black hole entropy [8 – 10] which exactly agrees with CFT statistical entropy in BPS

case (1.4), and fails already at first order in the non-BPS case [10, 11].4 As for the action

with pure Gauss-Bonnet correction, now it gives agreement in BPS case only at α′1-order,

and again completely fails in the non-BPS case. General arguments based on 3-dimensional

N = 4 SUSY and AdS/CFT are still valid, but explicit calculation of central charges and

entropy is still missing (one would need corresponding R2-supergravity action in D = 6,

which is not known). Again, a mystery is why R2-truncated actions which are incomplete

already at first order, are giving agreement (exactly or perturbatively) with statistical en-

tropy (only) for BPS black holes. That there is no generic problem with gravity description

of non-BPS black holes is shown by explicit perturbative calculations (up to α′2-order) of

black hole entropies which are in agreement with statistical entropies (1.2)–(1.5) [15, 16].

3The result has been recently extended to (0, 2) supersymmetry [14].
4We assume that in formulae from [10, 11] one makes proper definition for number of NS5 branes, i.e.,

N = m + 1, as explained later in section 4.

– 3 –



J
H
E
P
1
2
(
2
0
0
8
)
0
8
8

Motivated by such puzzles, we committed ourselves to calculate near-horizon solu-

tions and entropies of above mentioned extremal black holes directly from ten-dimensional

heterotic effective action (and without using AdS/CFT conjecture). First, we show that

starting from the action which contains all terms connected to gravitational Chern-Simons

term by on-shell N = 1 supersymmetry [17], one obtains black hole entropies which ex-

actly agree with statistical entropies, both in BPS and non-BPS cases (1.2)–(1.5). The

key property of near-horizon solutions, which enabled treatment of the action which has

infinite α′-expansion, is that they satisfy the relation

RMNPQ = 0 , (1.6)

where RMNPQ is the 10-dimensional Riemann tensor calculated from the torsional connec-

tion defined in (2.6).

It is known that heterotic effective action contains additional (unambiguous) terms

starting from α′3-order, which include ”infamous” R4-type term multiplied by ζ(3) number.

Due to irrational nature of ζ(3), and perturbative character of large black holes, it is obvious

that such terms should give vanishing contribution to the entropy, but direct argument

for such vanishing was missing. Our results show that not only this term but all terms

which are not connected with gravitational Chern-Simons term should give vanishing total

contribution to the entropy. Though the knowledge of this sector of the action is largely

incomplete and only few terms were explicitly computed, all but one5 of these computations

are in accord with the conjecture [22] that affine connection and 2-form field BMN enter this

part of the effective Lagrangian solely through the torsional Riemann tensor RMNPQ. The

trivial corollary of the conjecture (if correct), combined with the property (1.6), is that the

additional part of the action indeed does not make contribution to the near-horizon solution

and entropy, as expected. Turning the argument around, it could be said that our results

support the conjecture. We emphasize that weaker assumptions would be enough for our

purpose, e.g., that every monomial in the additional part of the action contains at least

two powers of RMNPQ (in fact, this was originally assumed in [19]). We mention that one

trivial consequence of the conjecture is that for corresponding large black holes in type-II

string theories near-horizon solutions and entropies are unaffected by α′-corrections, which

is in accordance with OSV conjecture [26].

Our results also shed some light on the puzzling aspects of small black holes, obtained

when magnetic charges (N ′ and W ′, or N) are taken to vanish. Such small black holes

are microscopically described by perturbative string (Dabholkar-Harvey) states for which

statistical entropy is asymptotically given in BPS case (n,w > 0) by

S
(BPS)
stat = 4π

√
nw , (1.7)

and in non-BPS case (for which as a representative we take n < 0, w > 0) by

S
(non−BPS)
stat = 2

√
2π
√

|n|w . (1.8)

5Selection of the references with calculations in accord with conjecture is [20, 21, 25]. The one which

finds violation of conjecture is [23], but the most recent calculations of the same terms in the action are

showing the opposite [25]. It would be interesting to clear this controversy.
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Now, if we naively put N ′ = W ′ = N = 0 in formulae for large black holes, we see that

in D = 4 (1.2) and (1.3) indeed give (1.7) and (1.8), while in D = 5 (1.4) and (1.5) give

something different. Though we do not have the full understanding of the small black hole

limit, our results show that there is no real controversy here. Though our solutions are

singular in both dimensions, in D = 4 singularity shows only in the sector which should

decouple in the limit and apparently can be regularized by field redefinitions, while in

D = 5 solutions are completely singular and it is not obvious how to regularize them.

The outline of the paper goes as follows. In section 2 we recapitulate facts about

effective action of heterotic string theory in D = 10, compactifications, and the way we

handle Chern-Simons term. In section 3 we present our near-horizon solutions for 4-charge

extremal black holes in D = 4, and in section 4 the same for 3-charge black holes in

D = 5 dimensions. In section 5 we comment on connection with AdS/CFT constructions

(section 5.1), compare our solutions with those obtained from R2-truncated actions (sec-

tion 5.2), review the known facts and controversies on the structure of effective action

(section 5.3), and comment the small black hole limit (section 5.4).

2. Effective action of heterotic string theories

2.1 Ten-dimensional effective action

The 10-dimensional tree-level effective action of heterotic string theory has an infinite

expansion in the string parameter α′

S(10) =

∫
dx10

√
−G(10)L(10) =

∞∑

n=0

∫
dx10

√
−G(10)L(10)

n , (2.1)

where G(10) is a determinant of the 10-dimensional metric tensor G
(10)
MN . As we are going

to be interested in classical purely bosonic configurations which are uncharged under 1-

form gauge fields, to simplify expressions we shall start from bosonic part of the tree-level

effective action with 1-form gauge fields taken to be zero. Then every L(10)
n is a function of

the string metric G
(10)
MN , Riemann tensor R

(10)
MNPQ, dilaton Φ(10), 3-form gauge field strength

H
(10)
MNP and the covariant derivatives of these fields. 10-dimensional space-time indices are

denoted as M,N, . . . = 0, 1, . . . , 9. The term L(10)
n has 2(n+1) derivatives, and is multiplied

with a factor of α′n.

Ten-dimensional Lagrangian can be decomposed in the following way

L(10) = L(10)
01 + ∆L(10)

CS + L(10)
other . (2.2)

The first term in (2.2), explicitly written, is

L(10)
01 =

e−2Φ(10)

16πG10

[
R(10) + 4

(
∂Φ(10)

)2
− 1

12
H

(10)
MNP H(10)MNP

]
, (2.3)

where G10 is 10-dimensional Newton constant. 3-form gauge field strength is not closed,

but instead given by

H
(10)
MNP = ∂MB

(10)
NP + ∂NB

(10)
PM + ∂P B

(10)
MN − 3α′Ω

(10)
MNP , (2.4)
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where Ω
(10)
MNP is the gravitational Chern-Simons form

Ω
(10)
MNP =

1

2
Γ

(10)R
MQ ∂NΓ

(10)Q
PR +

1

3
Γ

(10)R
MQ Γ

(10)Q
NS Γ

(10)S
PR (antisym. in M,N,P )

(2.5)

Bar on the geometric object means that it is calculated using a modified connection

Γ
(10)P

MN = Γ
(10)P

MN − 1

2
H

(10)P
MN (2.6)

in which H plays the role of a torsion. It is believed that Chern-Simons terms appear

exclusively through eq. (2.4).

If in (2.4) the Chern-Simons form Ω
(10)
MNP would be absent, then we would have L(10)

01 =

L(10)
0 in (2.1). Its presence introduces non-trivial α′-corrections. Beside, as shown in [17],

supersymmetrization (on-shell completion of N = 1 SUSY) of the Chern-Simons term

introduces a (probably infinite) tower of terms in the effective action (with increasing

number of derivatives), denoted by ∆L(10)
CS in (2.2). The first two non-vanishing terms (in

expansion in α′) are6

∆L(10)
CS,1 =

α′

8

e−2Φ(10)

16πG10
R

(10)
MNPQR

(10)MNPQ
(2.7)

and

∆L(10)
CS,3 = −α′3

64

e−2Φ(10)

16πG10

(
3TMNPQ TMNPQ + TMN TMN

)
(2.8)

where

TMNPQ ≡ R
(10) RS
[MN R

(10)
PQ]RS , TMN ≡ R

(10) QR
MP R

(10)P
NQR . (2.9)

Though higher terms present in ∆L(10)
CS were not explicitly constructed, it was argued

in [17] that α′n contribution should be a linear combination of monomials containing n

Riemann tensors RMNPQ calculated from the connection with torsion as given in (2.6).

This is the key information for us. All black hole near-horizon solutions that we construct

and analyze in the paper have the property that RMNPQ evaluated on them vanishes, which

means that all these terms, including (2.7) and (2.8), will be irrelevant in our calculations.

It is well-known that, beside terms connected with Chern-Simons term by supersym-

metry (analyzed above), additional terms appear in the effective action starting from α′3

(8-derivative) order. In (2.2) we have denoted them with L(10)
other. One well-known example

is R4-type term multiplied by ζ(3), which appears in all string theories. Unfortunately, the

knowledge of structure of L(10)
other is currently highly limited, and only few terms have been

unambiguously calculated.

From now on, we are going to neglect contributions coming from L(10)
other. One motiva-

tion is following from AdS3/CFT2 correspondence and anomaly inflow arguments of [12].

There was argued (from 3-dimensional perspective) that for geometries having AdS3 factor

only Chern-Simons terms are important for calculations of central charges (from which

6It was shown in [18] that this effective action is to α′1-order equivalent (up to field redefinitions) to the

one obtained in [19] directly from string amplitudes and sigma-model calculations.
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one can calculate the black hole entropy). L(10)
other neither contains Chern-Simons terms

nor is connected by supersymmetry to them, it should be irrelevant in such calculations.

AdS3/CFT2 argument is sometimes used to explain successes of R2-truncated actions (su-

persymmetric and/or Gauss-Bonnet) in calculations of entropies of BPS black holes in

D = 4 and 5. However, as the entropies obtained for non-BPS black holes fail to reproduce

statistical entropies, we would like to avoid depending just on that argument (notice that

static extremal black holes have AdS2 × S1 (instead of AdS3) factor, so the AdS3/CFT2

argument does not apply directly).

In fact, there is a more direct argument. If it happens that L(10)
other could be written

in such a way that every monomial in it contains two powers of RMNPQ, then it would

be irrelevant for our calculations and our results would be undoubtedly α′-exact. The

argument is the same as the one we used for ∆L(10)
CS two paragraphs above. Indeed, this

property was conjectured long time ago, see e.g., [19]. There is a stronger form of the

conjecture, which claims that L(10)
other is purely composed of (GMN contracted) products of

RMNPQ, see, e.g., [22]. Though the current status of the conjecture appears to be somewhat

controversial — it was disputed in [23, 24], but the most recent detailed calculations [25] of

some 8-derivative corrections (some of them recalculating the ones from [23, 24]) are giving

results in agreement with the strong form of the conjecture. We postpone discussion on this

interesting topic until section 5.3. We can say that results of this paper are in agreement

with the conjecture (at least in weak form).

2.2 Manipulating Chern-Simons terms in D = 6

All configurations that we analyze in this paper have four spatial dimensions compactified

on torus T 4, and are uncharged under Kaluza-Klein 1-form gauge fields originating from

four compactified dimensions. Taking from the start that corresponding gauge fields vanish7

one obtains that the effective action is the same as in the section 2.1, but now considering

all fields and variables to be 6-dimensional. Effectively, one just has to replace everywhere

(10) with (6) and take indices corresponding to 6-dimensional space-time, i.e., M,N, . . . =

0, 1, . . . , 5). To shorten the expressions, we immediately fix the values of Newton constant

and α′, which in our normalization take values G6 = 2 and α′ = 16.

Appearance of gravitational Chern-Simons term in (2.4) introduces two problems.

One is that it introduces in the action terms which are not manifestly diff-covariant,

and that prevents direct use of Sen’s entropy function formalism. A second problem is

that due to (2.6) and (2.4) Chern-Simons term is mixed in a complicated way with other

α′-corrections. We handle these problems by using the following two-step procedure (in-

troduced in [15]).

First, we introduce an additional 3-form K(6) = dC(6) and put a theory in a classically

7Such truncation is expected to be consistent.
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equivalent form in which Lagrangian is given by

√
−G(6)L̃(6) =

√
−G(6)L(6) +

1

(24π)2
ǫMNPQRSK

(6)
MNP H

(6)
QRS

+
3α′

(24π)2
ǫMNPQRSK

(6)
MNP Ω

(6)
QRS , (2.10)

and where now H
(6)
MNP should not be treated as a gauge field strength but as an auxiliary

3-form. Antisymmetric tensor density ǫMNPQRS is defined by ǫ012345 = 1. As a result,

Chern-Simons term is now isolated as a single α′1-correction, in a way which will eventually

allow us to write it in a manifestly covariant form.

Before passing to a second step of the procedure from [15], we need to isolate in (2.10)

ordinary Chern-Simons term Ω(6) (obtained from standard Levi-Civita connection) from

the rest by using (2.6). The result is [18]

Ω
(6)
MNP = Ω

(6)
MNP + A(6)

MNP (2.11)

where

A(6)
MNP =

1

4
∂M

(
Γ

(6)R
NQ H

(6)Q
RP

)
+

1

8
H

(6)R
MQ ∇NH

(6)Q
RP − 1

4
R

(6) QR
MN H

(6)
PQR

+
1

24
H

(6)R
MQ H

(6)S
NR H

(6)Q
PS (antisymmetrized in M,N,P ). (2.12)

Notice that when (2.12) is plugged in (2.11), and this into (2.10), which is then integrated

to obtain the action, contribution from the first term in (2.12) will, after partial integration,

have a factor dK(6) which vanishes because K(6) is by definition exact form. We now see

that A(6) gives manifestly covariant contribution to the action.

Now we are ready to write 6-dimensional action

S(6) =

∫
dx6
√

−G(6)L̃(6) (2.13)

in the form we are going to use extensively in the paper. Using (2.2) and the above analysis,

Lagrangian can be written in the following form

L̃(6) = L̃(6)
0 + L̃(6)′

1 + L̃(6)′′
1 + ∆L(6)

CS + L(6)
other . (2.14)

First term is lowest order (α′0) contribution given by (2.3)

L̃(6)
0 =

e−2Φ(6)

32π

[
R(6)+4

(
∂Φ(6)

)2
− 1

12
H

(6)
MNP H(6)MNP

]
+

ǫMNPQRS

(24π)2
√

−G(6)
K

(6)
MNP H

(6)
QRS

(2.15)

For later convenience we have separated first-order terms in three parts. One is given by

L̃(6)′
1 =

ǫMNPQRS

12π2
√

−G(6)
K

(6)
MNP

(
1

8
H

(6)U
QT ∇RH

(6)T
US − 1

4
R

(6) TU
QR H

(6)
STU +

1

24
H

(6)U
QT H

(6)V
RU H

(6)T
SV

)

(2.16)
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The second part, which contains gravitational Chern-Simons term and is not manifestly

covariant, is given by

L̃(6)′′
1 =

ǫMNPQRS

12π2
√

−G(6)
K

(6)
MNP Ω

(6)
QRS . (2.17)

Finally, the third part is contained in ∆L(6)
CS (2.7). In [15] it was shown how to rewrite (2.17)

in the manifestly covariant form for the particular type of the backgrounds which includes

those we shall analyze in this paper.

Following the discussion from the previous section, we shall first calculate near-horizon

solutions by ignoring ∆L(6)
CS and L(6)

other in the effective action (2.14). As all solutions that

we obtain satisfy RMNPQ = 0, from the conjecture that these terms can be written in

such a way that every monomial in them contains two powers of RMNPQ directly follows

that they are irrelevant for our calculations. As already discussed, for ∆L(6)
CS validity of the

conjecture was argued in [17], while for L(6)
other the situation is still unclear, though explicit

calculations are apparently supporting it (for more details see section 5.3).

All in all, we shall start from the reduced action with Lagrangian given by

L̃(6)
red = L̃(6)

0 + L̃(6)′
1 + L̃(6)′′

1 , (2.18)

and check if the near horizon solutions satisfy the condition RMNPQ = 0. If this is satisfied,

it follows immediately that they are also solutions of the action with Lagrangian

L̃(6)
susy = L̃(6)

red + ∆L(6)
CS , (2.19)

and, under the above mentioned assumption on L(6)
other, of the full heterotic action (2.14).

To avoid confusion, we emphasize that action (2.18) is equivalent (for backgrounds

satisfying RMNPQ = 0) to the 4-derivative action used in [15] up to α′1-order, but that

field redefinition which connects them introduces non-vanishing higher α′-corrections. This

was confirmed in [16], where it was shown that action from [15] must be supplemented with

higher-derivative terms, as indeed it is expected on general grounds.

2.3 Compactification to D < 6

Our main interest are black holes in D = 5 and D = 4 dimensions, so we consider further

compactification on (6 − D) circles S1. Using the standard Kaluza-Klein compactification

we obtain D-dimensional fields Gµν , Cµν , Φ, Ĝmn, Ĉmn and A
(i)
µ (0 ≤ µ, ν ≤ D − 1,

D ≤ m,n ≤ 5, 1 ≤ i ≤ 2(6 − D)):

Ĝmn = G(6)
mn , Ĝmn = (Ĝ−1)mn , Ĉmn = C(6)

mn ,

A(m−D+1)
µ =

1

2
ĜnmG(6)

nµ , A(m−2D+7)
µ =

1

2
C(6)

mµ − ĈmnA(n−D+1)
µ ,

Gµν = G(6)
µν − ĜmnG(6)

mµG(6)
nν ,

Cµν=C(6)
µν−4ĈmnA(m−D+1)

µ A(n−D+1)
ν −2(A(m−D+1)

µ A(m−2D+7)
ν −A(m−D+1)

ν A(m−2D+7)
µ )

Φ = Φ(6) − 1

2
lnV6−D , (2.20)
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There is also (now auxiliary) field H
(6)
MNP which produces D-dimensional fields Hµνρ, Hµνm,

Hµmn and Hmnp. As in [15], we take for the circle coordinates 0 ≤ xm < 2π
√

α′ = 8π, so

that the volume V6−D is

V6−D = (8π)6−D
√

Ĝ . (2.21)

The gauge invariant field strengths associated with A
(i)
µ and Cµν are

F (i)
µν = ∂µA(i)

ν − ∂νA
(i)
µ , 1 ≤ i, j ≤ 2(6 − D) , (2.22)

Kµνρ =
(
∂µCνρ + 2A(i)

µ LijF
(j)
νρ

)
+ cyclic permutations of µ, ν, ρ , (2.23)

where

L =

(
0 I6−D

I6−D 0

)
, (2.24)

I6−D being a (6 − D)-dimensional identity matrix.

For the black holes we are interested in, we have

A(i)
µ LijF

(j)
νρ = 0 . (2.25)

Normally, the next step would be to perform the Kaluza-Klein reduction on the 6-di-

mensional low-energy effective action to obtain a D-dimensional effective action, which can

be quite complicated. In [15] a simpler procedure is suggested — one goes to D dimensions

just to use the symmetries of the action to construct an ansatz for the background (AdS2×
SD−2 in our case) and then performs an uplift to 6 dimensions (by inverting (2.20)) where

the action is simpler and calculations are easier. We shall follow this logic here.

3. 4-dimensional 4-charge black holes in heterotic theory

Here we consider the 4-dimensional 4-charge extremal black holes appearing in the heterotic

string theory compactified on T 4 × S1 × S1. One can obtain an effective 4-dimensional

theory by putting D = 4 in (2.20) (using the formulation of the 6-dimensional action from

section 2.2) and taking as non-vanishing only the following fields: string metric Gµν , dilaton

Φ, moduli T1 = (Ĝ44)
1/2 and T2 = (Ĝ55)

1/2, four Kaluza-Klein gauge fields A
(i)
µ (0 ≤ µ, ν ≤

3, 1 ≤ i ≤ 4) coming from G
(6)
MN and 2-form potential C

(6)
MN , and two auxiliary 2-forms D

(n)
µν

(n = 1, 2) coming from H
(6)
MNP (which is now, as explained in section 2.2, an auxiliary field).

The black holes we are interested in are charged purely electrically with respect to

A
(1)
µ and A

(3)
µ , and purely magnetically with respect to A

(2)
µ and A

(4)
µ . From heterotic

string theory viewpoint, these black holes should correspond to 4-charge states in which,

beside fundamental string wound around one S1 circle (with coordinate x4), and with

nonvanishing momentum on it, there are also Kaluza-Klein and H-monopoles (NS5-branes)

wound around the same S1 and T 4 (with ”nut” on second S1).

For extremal black holes one expects AdS2 ×S2 near-horizon geometry [27 – 29] which

in the present case is given by:

ds2 ≡ Gµνdxµdxν = v1

(
−r2dt2 +

dr2

r2

)
+ v2(dθ2 + sin2 θdφ2) ,

e−2Φ = uS , T1 = u1 , T2 = u2 ,
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F
(1)
rt = ẽ1, F

(3)
rt =

ẽ3

16
, F

(2)
θφ =

p̃2

4π
sin θ , F

(4)
θφ =

p̃4

64π
sin θ ,

D(1) rt =
2u2

1 h1

v1v2uS
, D(2) θφ = − 8π u2

2 h2

v1v2uS sin θ
. (3.1)

Here v1, v2, uS , un, ẽi and hn (n = 1, 2, i = 1, . . . , 4) are unknown variables fixed by

equations of motion and values of electric charges q̃1,3. Somewhat unusual normalization

for hn is introduced for later convenience.

For the backgrounds obeying the full group of symmetries of AdS2 × SD−2 space, the

most efficient way for finding solutions is to use Sen’s entropy function formalism developed

in [30]. One defines the entropy function as

E = 2π

(
∑

I

q̃I ẽI −
∫

S2

√
−G L̃

)
, (3.2)

where q̃I are electric charges. On the right hand side one puts the near-horizon back-

ground (3.1) and integrates over the surface of the horizon (which is a 2-dimensional

sphere in the present case). L̃ is the effective Lagrangian in four dimensions. Equa-

tions of motion are obtained by extremizing the entropy function (3.2) over variables

{ϕa} = {v1, v2, uS , un, ẽi, hn},

0 =
∂E
∂ϕa

∣∣∣∣∣
ϕ=ϕ̄

. (3.3)

One obtains a system of algebraic equations. Finally, the black hole entropy, defined by

Wald formula [31], is given by the value of the entropy function at the extremum

Sbh = E(ϕ̄) , (3.4)

which is a function of electric and magnetic charges only.

Instead of calculating L̃ by doing dimensional reduction from six to four dimensions, it

is much easier to perform calculation of entropy function E directly in six dimensions were

we already know the action. For this, we have to lift the background to six dimensions,

which for (3.1) gives

ds2
6 ≡ G

(6)
MNdxMdxN = ds2 + u2

1

(
dx4 + 2ẽ1rdt

)2
+ u2

2

(
dx5 − p̃2

2π
cos θ dφ

)2

,

K
(6)
tr4 =

ẽ3

8
, K

(6)
θφ5 = − p̃4

32π
sin θ ,

H(6)tr4 =
4h1

v1v2uS
, H(6)θφ5 =

16π h2

v1v2uS sin θ
,

e−2Φ(6)
=

uS

64π2 u1u2
. (3.5)

Instead of L̃ and G we now use in (3.2) the six dimensional Lagrangian L̃(6) given in (2.14)–

(2.17) and the determinant G(6)

E = 2π

(
∑

I

q̃I ẽI −
∫

S2

√
−G(6) L̃(6)

)
. (3.6)
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This is obviously equivalent to (3.2).

As we discussed in sections 2.1 and 2.2, we concentrate on the part of the action con-

nected by 10-dimensional supersymmetry with Chern-Simons term (obtained by neglecting

L(6)
other in (2.14)). For the moment we also neglect ∆L(6)

CS, for which we show a posteriori

that it does not contribute to the near-horizon solutions and the entropies. This means

that we start with the reduced Lagrangian L̃(6)
red defined by (2.18), (2.15), (2.16) and (2.17).

Putting (3.5) in (2.18), and then this into the entropy function (3.6), we obtain

E = E0 + E ′
1 + E ′′

1 , (3.7)

where

E0 = 2π

[
q̃1ẽ1 + q̃3ẽ3 −

∫
dθ dφ dx4dx5

√
−G(6)L̃(6)

0

]

= 2π

[
q̃1ẽ1 + q̃3ẽ3 −

1

8
v1v2uS

(
− 2

v1
+

2

v2
+

2u2
1 ẽ2

1

v2
1

+
128π2u2

2h2(2ẽ3 − h2)

v2
1 u2

S

− u2
2 p̃2

2

8π2v2
2

− 8u2
1h1(2p̃4 − h1)

v2
2 u2

S

)]
, (3.8)

and

E ′
1 = −2π

∫
dθ dφ dx4dx5

√
−G(6)L̃(6)′

1

= −4πv1v2uS

(
8192π4u4

2ẽ3h
3
2

v4
1 u4

S

+
8u4

2ẽ3h2p̃
2
2

v2
1 v2

2 u2
S

− 128π2u2
2ẽ3h2

v2
1 v2 u2

S

+
32u4

1p̃4h
3
1

v4
2 u4

S

+
8u4

1ẽ
2
1h1p̃4

v2
1 v2

2 u2
S

− 8u2
1p̃4h1

v1 v2
2 u2

S

)
. (3.9)

With E ′′
1 the situation is a bit tricky because of the presence of Chern-Simons density

in (2.17). This means that L̃(6)′′
1 is not manifestly diffeomorphism covariant, and one cannot

apply directly Sen’s entropy function formalism. Fortunately, this problem was solved

in [15] where it was shown how for the class of the metrics, to which (3.5) belongs, one can

write E ′′
1 in a manifestly covariant form. We simply copy the final result (eq. (3.33) of [15])

E ′′
1 = −2π

∫
dθ dφ dx4dx5

√
−G(6)L̃(6)′′

1

= −(8π)2

[
p̃4

4π

(
u2

1

v1
ẽ1 − 2

u4
1

v2
1

ẽ3
1

)
+ ẽ3

(
u2

2

v2

p̃2

4π
− 2

u4
2

v2
2

(
p̃2

4π

)3
)]

. (3.10)

We are now ready to find near-horizon solutions, by solving the system (3.3), and black

hole entropy from (3.4). As we want to compare the results with the statistical entropy

obtained in string theory by counting of microstates, it is convenient to express charges

(q̃, p̃) in terms of (integer valued) charges naturally appearing in the string theory. In [15]

it was shown that in the present case the correspondence is given by

q̃1 =
n

2
, p̃2 = 4πN ′ , q̃3 = −4πW ′ , p̃4 = −w

2
, (3.11)
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where n and w are momentum and winding number of string wound along circle x4, and N ′

and W ′ are Kaluza-Klein monopole and H-monopole charges associated with the circle x5.

Using (3.7)–(3.11) in (3.3), we obtain quite a complicated algebraic system, naively not

expected to be solvable analytically. Amazingly, we have found analytic near-horizon solu-

tions for all values of charges, corresponding to BPS and non-BPS black holes.8 While in

BPS case analytic solutions are expected because one can use BPS conditions to drastically

simplify calculations, in non-BPS case in theories which involve higher-derivative correc-

tions analytic solutions are typically not known.9 Indeed, this is exactly what was observed

when 4-dimensional R2 supersymmetric action was used, in which case only perturbative

analysis was possible [1].

For clarity of presentation, we take w,N ′,W ′ > 0. Then n > 0 (n < 0) corre-

sponds to BPS (non-BPS) black holes, respectively. In the BPS case near-horizon solutions

are given by

v1 = v2 = 4(N ′W ′ + 2) , uS =

√
nw

N ′W ′ + 4
,

u1 =

√
n(N ′W ′ + 2)

w(N ′W ′ + 4)
, u2 =

√
W ′

N ′

(
1 +

2

N ′W ′

)
, (3.12)

ẽ1 =
1

n

√
nw(N ′W ′ + 4) , ẽ3 = h2 = −N ′

8π

√
nw

N ′W ′ + 4
, h1 = −w

2
.

For the entropy we obtain

SBPS
bh = 2π

√
nw(N ′W ′ + 4) . (3.13)

This is exactly what one obtains by microstate counting in string theory (1.2), in the limit

nw ≫ N ′W ′, which corresponds to tree-level approximation on gravity side.

In the non-BPS case we obtain

v1 = v2 = 4(N ′W ′ + 2) , uS =

√
|n|w

N ′W ′ + 2
,

u1 =

√
|n|
w

, u2 =

√
W ′

N ′

(
1 +

2

N ′W ′

)
, (3.14)

ẽ1 =
1

n

√
|n|w(N ′W ′ + 2) , ẽ3 = h2 = −N ′

8π

√
|n|w

N ′W ′ + 2
, h1 = −w

2
.

For the entropy we obtain

Snon−BPS
bh = 2π

√
|n|w(N ′W ′ + 2) . (3.15)

Again, agreement with statistical calculation in string theory (1.3) is exact in α′.

8The way we constructed solutions was indirect - we managed to conjecture them from perturbative

calculations (which we did up to α′4), and then checked them by putting into exact equations. For some

special sets of charges we then numerically checked that there are no other physically acceptable solutions.
9However, one exception can be found in [10].
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Now we have to check that R
(6)
MNPQ vanishes when evaluated on our solutions.

From (2.6) one gets

R
(6)M

NPQ = R
(6)M

NPQ + ∇[P H
(6)M

Q]N − 1

2
H

(6)M
R[P H

(6)R
Q]N . (3.16)

It is easy to show that, both for BPS (3.12) and non-BPS (3.14) solutions, 6-dimensional

background (3.5) has

R
(6)
MNPQ = 0 . (3.17)

As explained in sections 2.1 and 2.2, from this follows that inclusion of the term ∆L(6)
CS

does not change neither the near-horizon solutions (3.12) and (3.14) nor the corresponding

black hole entropies (3.13) and (3.15), which means that all our results would be obtained

if we started with the more complicated supersymmetric Lagrangian (2.19), constructed

by supersymmetrizing gravitational Chern-Simons term.

4. 5-dimensional 3-charge black holes in heterotic theory

Here we consider the 5-dimensional spherically symmetric 3-charge extremal black holes

which appear in the heterotic string theory compactified on T 4 × S1. One can obtain an

effective 5-dimensional theory by putting D = 5 in (2.20) (again using the formulation of

the 6-dimensional action from section 2.2) and taking as non-vanishing only the following

fields: string metric Gµν , dilaton Φ, modulus T = (Ĝ55)
1/2, two Kaluza-Klein gauge fields

A
(i)
µ (0 ≤ µ, ν ≤ 4, 1 ≤ i ≤ 2) coming from G

(6)
MN and 2-form potential C

(6)
MN , the 2-form

potential Cµν with the strength Kµνρ, one Kaluza-Klein auxiliary two form Dµν coming

from H
(6)
MNP , and auxiliary 3-form Hµνρ.

The black holes we are interested in are charged purely electrically with respect to A
(i)
µ ,

and purely magnetically with respect to Kµνρ. From the heterotic string theory viewpoint,

these black holes should correspond to 3-charge states in which, beside fundamental string

wound around S1 circle with nonvanishing momentum on it, there are NS5-branes wrapped

around T 4 × S1.

For extremal black holes we now expect10 AdS2 × S3 near-horizon geometry which in

the present case is given by:

ds2≡Gµνdxµdxν =v1

(
−r2dt2+

dr2

r2

)
+v2dΩ3 ,

F
(1)
rt = ẽ1, F

(2)
rt =

ẽ2

4
, K234 =

p̃

4

√
g3 ,

Drt =
2u2

T h1

v1v
3/2
2 uS

, H234 = − 8h2

v1v
3/2
2 uS

√
g3

,

e−2Φ = uS , T = uT . (4.1)

10In D = 5 there is no explicit proof that extremal asymptotically flat black holes must have AdS2 × S3

near-horizon geometry. However, for the large black holes analyzed here one knows that lowest order

solutions, which were fully constructed, have such near-horizon behavior, and from continuity one expects

the same when α′-corrections are included. We note that the situation is not that clear for small black

holes, which we shall discuss later.
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Here g3 is a determinant of the metric on the unit 3-sphere S3 (with coordi-

nates xi, i = 2, 3, 4).

We follow the procedure from section 3. Lift of (4.1) to six dimensions gives

ds2
6 ≡ G

(6)
MNdxMdxN = ds2 + u2

T

(
dx5 + 2ẽ1rdt

)2
,

K
(6)
tr5 =

ẽ2

2
, K

(6)
234 = K234 =

p̃

4

√
g3 ,

H(6)tr5 =
4h1

v1v
3/2
2 uS

, H(6)234 = − 8h2

v1v
3/2
2 uS

√
g3

,

e−2Φ(6)
=

uS

8π uT
. (4.2)

Now v1, v2, uS , uT , ẽ1, ẽ2, h1 and h2 are unknown variables whose solution is to be found

by extremizing the entropy function for the fixed values of electric and magnetic charges

q̃1,2 and p̃. Entropy function is now given by

E = 2π

(
2∑

i=1

q̃i ẽi −
∫

S3

√
−G L̃

)
= 2π

(
2∑

i=1

q̃i ẽi −
∫

S3

√
−G(6) L̃(6)

)

= E0 + E ′
1 + E ′′

1 , (4.3)

where

E0 = 2π

[
q̃1ẽ1 + q̃2ẽ2 −

π

16
v1v

3/2
2 uS

(
− 2

v1
+

6

v2
+

2u2
T ẽ2

1

v2
1

+
32h2(2ẽ2 − h2)

v2
1 u2

S

−8u2
T h(2p̃ − h)

v3
2 u2

S

)]
, (4.4)

E ′
1 = −2π2v1v

3/2
2 uS

[
512 e2h

3
2

v4
1u

4
S

+
32u4

T p̃ h3
1

v6
2u

4
S

+
8u4

T p̃ h1ẽ
2
1

v2
1v

3
2u

2
S

− 8u2
T p̃ h1

v1v
3
2u

2
S

− 96 ẽ2h2

v2
1v2u

2
S

]
, (4.5)

E ′′
1 = −8π2p̃

(
u2

T

v1
ẽ1 − 2

u4
T

v2
1

ẽ3
1

)
. (4.6)

Again, to obtain (4.6) we had to deal with gravitational Chern-Simons term. However,

this was already done in [16], so we just copied the result.

The correspondence to the integer-valued charges (n,w,m) appearing in string theory

was discussed in [16]. The result was

q̃1 =
n

2
, q̃2 = −16πm , p̃ = −w

π
. (4.7)

Here n and w are momentum and winding number of string wound around S1. We postpone

interpretation of m for a moment.

Again, we were able to find analytic solutions to algebraic system for all values of

charges. For clarity of presentation, we restrict to w,m > 0. Then n > 0 (n < 0)

correspond to BPS (non-BPS) black holes.
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In the BPS case near-horizon solutions for 3-charge black holes are given by

v1 = 4(m + 1) , v2 = 4v1 , uS =
1

8π

√
nw

(m + 1)(m + 3)
, uT =

√
n(m + 1)

w(m + 3)
,

ẽ1 =
1

n

√
nw(m + 3) , ẽ2 = h2 = − 1

32π

√
nw

m + 3
, h1 = −w

π
. (4.8)

For the entropy we obtain

SBPS
bh = 2π

√
nw(m + 3) . (4.9)

In the non-BPS case (n < 0) we obtain

v1 = 4(m + 1) , v2 = 4v1 , uS =

√
|n|w

8π(m + 1)
, uT =

√
|n|
w

,

ẽ1 =
1

n

√
|n|w(m + 1) , ẽ2 = h2 = − 1

32π

√
|n|w

m + 1
, h1 = −w

π
. (4.10)

For the entropy we obtain

Snon−BPS
bh = 2π

√
|n|w(m + 1) . (4.11)

This is exactly equal to the result conjectured in [16] (on the basis of α′3-order

perturbative results).

There is a subtle issue connected to interpretation of charges. Naively, we would

expect that charge m should be equal to the number of NS5-branes, which we denote by

N . To check this, let us calculate components of 3-form strength H(6) with indices on S3,

evaluated on our solutions (4.8) and (4.10). The result is

H
(6)
234 = 32(m + 1)

√
g3 . (4.12)

From (4.12) follows that (m + 1) is the magnetic charge (factor of 32 is from 2α′). As

magnetic charges have topological origin, and so are not expected to receive perturbative

corrections, we conclude that the number of NS5-branes should be given by

N = m + 1 . (4.13)

Using this in (4.8) and (4.10) we obtain our solutions expressed using ”natural” charges of

the string theory, i.e., momentum n, winding w and number of NS5-branes N .

In the BPS case near-horizon solution (4.8) becomes

v1 = 4N , v2 = 4v1 , uS =
1

8π

√
nw

N(N + 2)
, uT =

√
nN

w(N + 2)
,

ẽ1 =
1

n

√
nw(N + 2) , ẽ2 = h2 = − 1

32π

√
nw

N + 2
, h1 = −w

π
, (4.14)

while the entropy (4.9) is

SBPS
bh = 2π

√
nw(N + 2) . (4.15)
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In the non-BPS case near-horizon solution was given with (4.8) which now becomes

v1 = 4N , v2 = 4v1 , uS =

√
|n|w

8πN
, uT =

√
|n|
w

,

ẽ1 =
1

n

√
|n|wN , ẽ2 = h2 = − 1

32π

√
|n|w
N

, h1 = −w

π
, (4.16)

and the entropy (4.11) is

Snon−BPS
bh = 2π

√
|n|wN . (4.17)

Though a detailed analyses of our near-horizon solutions (4.14) and (4.16) will be given in

section 5, let us note here the following important properties:

• Non-BPS solution (4.16) is α′-uncorrected in our scheme. Now, it was shown that

lowest-order BPS solution is an α′-exact solution from the sigma model calcula-

tions [35] (corresponding result for 4-charge 4-dimensional black holes was given

in [34]). As we use different scheme, our solutions cannot be directly compared

to sigma model ones.

• The expressions for black hole entropies (4.15) and (4.17) are in agreement with

those obtained from AdS/CFT correspondence, using the results for central charges

calculated in [36] (see section 5.1 for more details).

Finally, it is easy to check that both BPS and non-BPS near-horizon solutions presented

in this section satisfy 6-dimensional relation (3.17), which again means that inclusion of

∆L(6)
CS in the action would not change our solutions and entropies (so they are also solutions

of the action (2.19)).

5. Comments on the solutions

5.1 AdS3/CFT2 correspondence

The solutions that we found and presented in sections 3 and 4 are locally isomorphic to

AdS3 × S3 geometry. The quickest way to realize this is to notice that all of them satisfy

R
(6)
MNPQ = −ℓ−2

A

(
G

(6)
MP G

(6)
NQ − G

(6)
MQG

(6)
NP

)
for M,N,P,Q ∈ {0, 1, y}

= ℓ−2
S

(
G

(6)
MP G

(6)
NQ − G

(6)
MQG

(6)
NP

)
for M,N,P,Q ∈ {2, 3, z}

where ℓA and ℓS play the role of radii of AdS3 and S3, respectively. For 4-dimensional

4-charge near-horizon solutions of section 3 we have y = 4, z = 5, and the radii are

ℓ2
A = ℓ2

S = 16(N ′W ′ + 2) , (5.1)

both for BPS and non-BPS solutions. For 5-dimensional 3-charge near-horizon solutions

of section 4 we have y = 5, z = 4, and the radii are

ℓ2
A = ℓ2

S = 16N , (5.2)
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again the same for BPS and non-BPS solutions.

A presence of AdS3 suggests that one can use powerful methods of AdS/CFT corre-

spondence for obtaining the entropies. Using the dual CFT2 formulation one obtains that

the asymptotic expression for the black hole entropy should be given by Cardy formula [41]

SCFT = 2π

√
cR nR

6
+ 2π

√
cL nL

6
. (5.3)

For the extremal black holes that we analyzed, nR = 0 and nL = n in the BPS case, and

nL = 0 and nR = |n| in the non-BPS case. Generally, it is nontrivial to determine central

charges cR and cL, but in the case of heterotic black holes analyzed in this paper the

explicit sigma model calculations are possible and were done in [36]. In the case relevant

for 4-charge black holes in D = 4 the result was11

cR = 6(N ′W ′ + 2) , cL = 6(N ′W ′ + 4) , (5.4)

while in the case relevant for 3-charge black holes in D = 5

cR = 6N , cL = 6(N + 2) . (5.5)

When (5.4) and (5.5) are plugged in Cardy formula (5.3) one obtains exactly the black

hole entropies from sections 3 and 4, i.e., (3.13), (3.15), (4.15) and (4.17).

Later it was shown [12, 37, 13] that when effective 3-dimensional theory on AdS3 has

(0, 4) (or even smaller (0, 2) [14]) supersymmetry, central charges are generally determined

purely by the coefficients of Chern-Simons terms. This method of calculating central

charges has two virtues:

(i) it is general, depending only on symmetries,

(ii) as Chern-Simons terms are connected to anomalies and correspondingly 1-loop sat-

urated, their coefficients in many cases can be calculated exactly (at least in α′).

In fact, in [12] the power of this method was demonstrated by calculating central

charges (5.4) relevant for the entropy of 4-dimensional 4-charge black holes.

The corresponding gravity calculation was done in [39], by calculating cR + cL from the

AdS3 ×S2 solution of the effective 5-dimensional R2 supergravity action constructed in [6]

(obtained by supersymmetrization of gravitational Chern-Simons term). As for the case

relevant for 5-dimensional 3-charge black holes, i.e., (5.5), such calculations were not per-

formed. For the gravity calculation, one needs 6-dimensional R2 action (to find AdS3 ×S3

solutions) which is not fully known.

Our method can be used to obtain the missing gravity confirmation for (5.5). The

central charges cR,L can be calculated by using a generalization of the Sen’s entropy func-

tion formalism to AdS3 ×Sl geometries (equivalent to ”c-extremization” method reviewed

in [37]).12 Starting from the same 10-dimensional supersymmetric action as before, in the

11The dual CFT2 was proposed in [38].
12In [42, 43] different types of extension of entropy function formalism to general AdSk × Sl geometries

were discussed.
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case relevant for 4-dimensional 4-charge black holes (AdS3×S2 geometry) we obtain (5.4),

while in the case relevant for 5-dimensional 3-charge black holes (AdS3 × S3 geometry)

we obtain (5.5). We shall present details of the calculation in separate publication [44].

As in our calculation the only relevant higher-derivative part of the action is the one di-

rectly connected with Chern-Simons term, our results are (as expected) in agreement with

Kraus-Larsen method [12].

5.2 Comparison with previous analyses

The four- and five-dimensional black holes considered in this paper (we denote our results

by ”susy10”) have been analyzed previously in the literature by using two different types

of four-derivative corrections to the lowest order (two-derivative) action:

(a) N = 2 off-shell supersymmetric R2 corrections directly constructed in D = 4 and 5

dimensions (denoted here ”susyD”), and

(b) pure Gauss-Bonnet correction (”GB”).

As the starting points of all of the mentioned calculations are mutually inequivalent ac-

tions which contain only parts of α′-corrections of the full effective action of heterotic string

(which has infinite expansion in α′), it is interesting to compare the results.13 Of course,

to do this properly one would have to deal with freedom coming from regular field redef-

initions14 and gauge-fixings (indeed, one look at these solutions reveals that they are all

mutually different). We shall restrict ourselves here to few, potentially interesting, remarks.

In D = 4 dimensions, for BPS black holes all actions (”susy10”, ”susy4” and ”GB”) are

leading to the same entropy formula, which agrees exactly in α′ with statistical entropy (1.2)

obtained by counting of microstates in heterotic string theory. As for the near-horizon

solutions, especially interesting is the similarity between our ”susy10” (3.12) and ”GB”

solutions (eqs. (3.1.56), (3.1.57) in [1]); they match for v1, v2, uS, e1, and H(6)MNP . In

fact, they differ only for u1 and u2, which are in the ”GB” solution given by

u1 =

√
n

w
, u2 =

√
W ′

N ′
. (5.6)

Now, we saw in section 3 that u1 and u2 have naive interpretation as moduli (proper radii)

T1 and T2 of the compactification circles. With this interpretation, it is (5.6) which is

consistent with T-dualities of the string theory (T1 → 1/T1 and n ↔ w, T2 → 1/T2 and

N ′ ↔ W ′), unlike u1 and u2 from our ”susy10” solution (3.12). Our analysis strongly

suggest that, not only that ”GB” near-horizon solution should be taken seriously, and is

13For D = 4 dimensional black holes ”susy4” and ”GB” results are reviewed in detail in [1]. For D = 5

dimensional black holes ”susy5” and ”GB” results can be found in [11].
14To properly take into account field redefinition freedom, one needs to know the action fully up to

particular order. The interesting discussion related to this, in the context of AdS5 × S5 solutions in type-

IIB theory, can be found in [45].
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probably correct, but also that it is more directly connected to stringy geometry.15 We

emphasize this because the fact that simple Gauss-Bonnet correction leads to α′-exact

agreement with statistical entropy formula is still not understood well, and is appearing

almost as a miracle.

As for ”susy4” near-horizon BPS solution, it was shown in [32] that it almost matches

with ”GB”, differing only in u1 and u2 [1]. This mismatch is again probably due to

the different field redefinition schemes. Altogether, we tend to believe that ”susy10”,

”susy4” and ”GB” near-horizon solutions for BPS 4-dimensional 4-charge black holes are

all equivalent.

For non-BPS black holes in D = 4 only our ”susy10” solution is giving correct statistical

entropy (1.3). Both ”susy4” and ”GB” solutions are giving wrong results already at α′1

order, which signals that corresponding actions are incomplete already at four-derivative

level (but for some unknown reason are giving exact results for BPS black holes) [1].

In D = 5 dimensions, for large (N 6= 0) BPS black holes only ”susy10” and ”susy5”

are leading to the entropy formula (1.4), which is in agreement with prediction based on

AdS/CFT conjecture [36] (direct stringy statistical calculation is still not known). ”GB”

entropy differs starting from α′2-order [11]. Again, it is interesting to compare our near-

horizon solution ”susy10” with ”susy5”, given in eq. (5.28-30) of [10] (with ζ = 1). After

passing to the string frame, ”susy5” solution becomes16

v1 =
α′

4
(m + 1) , v2 = 4v1 , uS =

πα′−3/2

4G5

√
nw

(m+1)(m+3)
, uT =

√
n(m + 1)

w(m + 3)
,

e1 =
1

2α′

√
nw

(m + 3)
, e2 =

√
α′

2n

√
nw(m+3) , e3 =

√
α′

2w

√
nw(m+3) . (5.7)

In [10] different conventions were used (α′ = 1, G5 = π/4). Using conventions from the

present paper, which include α′ = 16 and G5 = 2, but also transformations on gauge fields

which include passing from 3-form K to H (i.e., ”removing” tildes), renaming of indices,

additional factors of 2 coming from different normalization in the corresponding actions,

and finally N = m + 1, it is easy to show that ”susy5” solution (5.7) becomes exactly

our ”susy10” solution (4.14). This matching is not that surprising, considering that the

starting actions were both obtained by supersymmetrization of gravitational Chern-Simons

15The fact that u1 and u2 of ”susy10” solution do not respect naively implemented T-dualities does not

mean that solution is wrong, but that probably one needs field redefinitions to connect them to moduli

T1 and T2 of the stringy geometry. It is not unusual that inclusion of higher-derivative corrections in the

action induce corrections to physical interpretations of fields (for explicit example see [49]).
16In obtaining expression for uT in (5.7) we used T = (M1)−1/2(M2)−1 (see [11] for notations), relation

valid in the two-derivative approximation. But, in this approximation, from the on-shell condition for

prepotential N ≡ M1M2M3 = 1 (real special geometry) follows that one could use also T = (M1)1/2M3 or

T = (M3/M2)1/2. That, however, give different expressions for uT , which is a consequence of the fact that

higher-derivative corrections make N 6= 1. For the choice T = (M3/M2)1/2 one gets uT =
p

n/w, which

means that this could be a correct identification with heterotic string compactification modulus (radius of

S1) [11]. Similarly, we obtained uS in (5.7) by using S = (M1)3/2, instead of S = (M2M3)−3/2, which is

equivalent in the two-derivative approximation, but receives different higher α′ corrections.
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term, in one case in D = 10 (on-shell supersymmetry) and in the second case directly in

D = 5 (off-shell supersymmetry).

For non-BPS black holes in D = 5, ”susy5” and ”GB” solutions are giving results

for the entropy disagreeing with ”susy10” entropy (4.17) already at α′1-order. As (4.17)

can be obtained from (5.5) by using AdS/CFT arguments [16], this again signals that

”susy5” and ”GB” actions are incomplete (as heterotic string effective actions) already at

four-derivative level.

5.3 Additional terms in the action

We have obtained results for black hole entropies which match statistical entropies of string

theory exactly in α′ by using part of the effective action obtained by supersymmetrization

of the gravitational Chern-Simons term. As we already discussed in section 2, this is not

a complete action, and there are other terms (denoted by L(10)
other in (2.14)) starting from

α′3-order. Natural question is: why these other terms do not contribute? One explanation

comes from AdS3/CFT2 (plus (0, 4) supersymmetry) anomaly inflow arguments [12] men-

tioned in section 5.1: in 3-dimensional language the only relevant terms are Chern-Simons

terms. So, it is natural to expect also from 10-dimensional perspective that the only terms

which are important are Chern-Simons terms and terms connected to them by supersym-

metry. However, we find it interesting to address the above question directly, as it can give

us some new information on the structure of the 10-dimensional effective action.

From the fact that our calculation was successful for different types of black holes, it is

natural to assume that cancellations appear because of some general property of solutions.

In fact, even before inclusion of L(10)
other, we have seen in section 2.1 that we were able to

handle infinite number of terms in ∆L(10)
CS because of the following properties:

1. Every term in ∆L(10)
CS has at least two powers of Riemann tensors R

(10)
MNPQ, calculated

using connection with torsion (2.6). (In fact, every monomial at α′n order is obtained

by contraction of (n + 1) Riemanns R
(10)
MNPQ [17].)

2. Neglecting ∆L(10)
CS , obtained near-horizon solution satisfies R

(10)
MNPQ = 0.

From these properties it trivially follows that ∆L(10)
CS is giving vanishing contribution to

near-horizon equations of motion and black hole entropy.

Now, if the property 1 would hold also for L(10)
other (weak form of the conjecture) the

same reasoning would immediately prove that this term is irrelevant in calculations of

near-horizon solutions and the entropies. In fact, property 1 was conjectured long time

ago in [19]. After explicit 4-point level calculations [20, 21] confirmed this by showing

that at this level L(10)
other can be constructed just from monomials which are pure contracted

products of RMNPQ (a stronger version of the conjecture), the conjecture was taken more

seriously and used (in the stronger form) in literature, see, e.g., [22].

However, results of more recent calculations of 1-loop 5-point amplitudes in type-IIB

string theory17 in [23, 24] appeared to violate the stronger version of conjecture. As, in

17The 1-loop part of the NS-NS sector of type IIB effective action has the same form as the tree-level

part, which is equal for all superstring theories.
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addition, no one has found any convincing argument why the conjecture (in weaker or

stronger form) should be correct, a widespread opinion among the experts was that it is

indeed wrong.18

And then, the most recent detailed calculation [25] of the 1-loop 5-point type-IIB

amplitudes gave results which are in agreement with the conjecture (stronger form). Now,

how this new twist can be compatible with the results from [23, 24]? Calculations in [24], as

already noted by the authors, were incomplete, because subtractions due to quartic terms

in the action were not done. A disagreement with [23] is more mysterious.

If the conjecture, as supported by [25], is correct (at least in weaker form, obtained

by replacing ∆L(10)
CS with L(10)

other in property 1 above), then we are guaranteed that our

near-horizon solutions from sections 3 and 4 are indeed α′-exact solutions of the full 10-

dimensional heterotic effective action.

Starting from the opposite side, the fact that our near-horizon solutions are giving

the black hole entropies which are α′-exactly equal to microscopic statistical entropies,

implies that our calculations support the above conjecture (at least in the weak form) on

the form of L(10)
other. Though, because of the simplicity of our solutions (e.g., all covariant

derivatives vanish), results of the present paper are insufficient to prove the conjecture,

they can be used to extract interesting relations between terms of the form RkH2l in the

effective action.

At the end, let us mention one, almost trivial, consequence of the conjecture. Let us

consider the same type of black holes, but now in type II string theories (compactified on

the same manifolds as before). As for these theories the only relevant α′ corrections are

given by L(10)
other, which is the same as in heterotic action, we obtain that the near-horizon

solutions and entropies stay uncorrected. This means that the entropy formula for 4-charge

black holes in D = 4 (compactification on S1 × S1 × T 4) is

Sbh = 2π
√

|nwN ′W ′| , (5.8)

while for 3-charge black holes in D = 5 (compactification on S1 × T 4) is

Sbh = 2π
√

|nwN | . (5.9)

For the large BPS black holes (when all charges are nonvanishing), (5.8) and (5.9) follow

from OSV conjecture [26]. It would be interesting to find out could the above argument

be used for more general black holes in type II string theories, like those analyzed in [46].

5.4 Small black holes

When one takes magnetic charges, which are N ′ and W ′ for 4-charge states analyzed in sec-

tion 3, and N for 3-charge states analyzed in section 4, to vanish, one obtains 2-charge states

describing a fundamental heterotic string on MD × S1 × T 9−D (where D = 4 or 5, respec-

tively) having a momentum n and winding number w on S1. These, so called Dabholkar-

Harvey states, can be defined for any D ≤ 9. For such states, which are pure perturbative

string states, it is easy to calculate statistical entropy asymptotically for |nw| ≫ 1.

18I am grateful to K. Peeters for discussions on this point.
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For BPS states which satisfy n,w > 0 statistical entropy is

SBPS
stat = 4π

√
nw , (5.10)

while for non-BPS states satisfying n < 0, w > 0 statistical entropy is

Snon−BPS
stat = 2

√
2π
√

|nw| . (5.11)

On the gravity side, these states should correspond to small black hole solutions

(see [47] and references therein) which at the lowest order (Einstein gravity) have singular

horizon with vanishing area (and entropy). Inclusion of α′-corrections is expected to make

horizon regular, but with the radius of the order of string length. This means that curva-

ture scalars are of the order 1/α′, which suggests that for such solutions low energy (small

curvature) effective action should not be useful. This was explicitly shown in [48], where

higher-curvature corrections were modeled by simple Gauss-Bonnet term (”GB”-action, in

the language of section 5.2). Surprisingly, this simple action gives the entropy which agrees

with statistical result in the BPS case (5.10) in D = 4 and 5 (but fails to reproduce (5.11)

in the non-BPS case). We mention that the BPS entropy formula (5.10) can be reproduced

in all dimensions if one takes unique action whose α′-correction is purely given by extended

Gauss-Bonnet densities [40], but it is still unclear why such action should be relevant.

Let us analyze first small black hole limit in D = 4, which is obtained by taking

N ′,W ′ → 0 (by keeping N ′/W ′ fixed and finite) in 4-charge near-horizon solutions (3.12)

and (3.14). For the AdS2 and S2 radii we obtain rA = rS =
√

8 =
√

α′/2. The limit is

regular for all variables, except for u2 (term inside round bracket obviously diverges). At

first, this appears as a serious problem, because u2 should correspond to proper radius T2

(measured in α′-units, see eq. (2.21)) of one of the compactification circles. But, from T-

duality we expect to have T2 =
√

W ′/N ′, which is differing from expressions for u2 in (3.12)

and (3.14) exactly by the problematic term in round brackets. Now it is obvious what is

happening here. Higher-derivative corrections have changed the physical meaning of u2,

and to get back to the standard interpretation one needs a field redefinition. It appears here

that the requested field redefinition, which should remove round bracket in expression for

u2, is singular in the small black hole limit. Though the field redefinition analysis appears

quite tricky,19 and goes beyond the present paper, we expect that obtained small black hole

solutions are meaningful. This is supported by the results for the entropy: taking N ′,W ′ =

0 in (3.13) and (3.15) is giving exact agreement with statistical entropies (5.10) and (5.11).

Let us mention that ”susy4”-action (as ”GB”-action) is reproducing the statistical entropy

only in BPS case (5.10) [49 – 51].

Let us now see what is happening for 3-charge small black holes in D = 5. Plugging

N = 0 in near-horizon solutions (4.14) and (4.16) one gets completely singular solutions,

19One can easily find simple field redefinition which does the job for u2, for example

T2 = u2

r

1 − 16 u2
2

“

F
(2)
µν

”2

, (5.12)

but this by itself will not remove all the tricky terms in the entropy function (which behave non-trivially

in the small black hole limit).
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where AdS2 and S3 radii, modulus uT (BPS case), and effective string coupling (1/
√

uS)

all vanish. It appears that α′ corrections considered here are not regularizing the horizon.

In this case taking naive limit N → 0 in black hole entropy formulae (4.15) and (4.17) is

meaningless, so it is not strange that the small black hole limit does not give statistical

entropies (5.10) and (5.11). All our efforts, analytical and numerical, for finding regular

AdS2 × S3 solutions from Lagrangians (2.18) and (2.19) failed.

Let us mention that the same happens for corresponding small black holes in type-II

theories, for which statistical entropy, for all values of charges, is given by (5.11). Near-

horizon solutions and large black hole entropies are α′-uncorrected, both in D = 4 and

D = 5, and so obviously have completely singular small black hole limits.

There are three possible explanations:

1. Horizon geometry drastically changes.

2. Low energy effective action is useless for such small black holes (as naively expected).

It may be that this is just the problem of the scheme used, and some singular field

redefinition could put the action in the form which has regular small black hole

solutions. Our analysis suggests that these (singular) field redefinitions should be

much more complicated than those needed in heterotic D = 4 cases.

3. For such small black holes new physically acceptable near-horizon solutions (of non-

linear equations) with AdS2 × SD−2 appear. If this is the case, our analysis shows

that such solutions should not satisfy RMNPQ = 0. But, without this condition, we

are unable to perform calculations because the effective actions are unknown (and

also have infinite number of terms).

It would be interesting to understand the connection between our results, in particular

the difference between four and five-dimensional small black holes, and the analyses of

fundamental string based on supersymmetry and holography [52 – 58, 38].
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